in

#DataQualityMatters for improved deep learning pulmonary nodule detection. #Radiology

Better performance of deep learning pulmonary nodule detection using chest radiography with pixel level labels in reference to computed tomography: data quality matters

Summarise this content to 300 words

  • Mortality, G. B. D., Causes of Death C. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1459–1544 (2016).

    Article 

    Google Scholar
     

  • Brogdon, B. G., Kelsey, C. A. & Moseley, R. D. Jr. Factors affecting perception of pulmonary lesions. Radiol. Clin. North Am. 21, 633–654 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forrest, J. V. & Friedman, P. J. Radiologic errors in patients with lung cancer. West J Med. 134, 485–490 (1981).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levin, D. C., Rao, V. M., Parker, L. & Frangos, A. J. Analysis of radiologists’ imaging workload trends by place of service. J. Am. Coll. Radiol. 10, 760–763 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Bhargavan, M., Kaye, A. H., Forman, H. P. & Sunshine, J. H. Workload of radiologists in United States in 2006–2007 and trends since 1991–1992. Radiology. 252, 458–467 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature. 521, 436–444 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nam, J. G. et al. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology. 290, 218–228 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, V. et al. Automated identification of pneumonia in chest radiograph reports in critically ill patients. BMC Med. Inform. Decis. Mak. 13, 90 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, K. L., Hsu, C. H., Hidayati, S. C., Cheng, W. H. & Chen, Y. J. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Oncol. Targets Ther. 8, 2015–2022 (2015).

    CAS 

    Google Scholar
     

  • Lakhani, P. & Sundaram, B. Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 284, 574–582 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, X., Peng, Y., Lu, L., Lu, Z., & Summers, R. M. Tienet: Text-image embedding network for common thorax disease classification and reporting in chest x-rays, 9049–9058 (2018).

  • Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., et al. Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison, 590–597 (2019).

  • Johnson, A. E., Pollard, T. J., Greenbaum, N. R., Lungren, M. P., Deng, C., Peng, Y., et al. MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs. arXiv preprint arXiv:190107042 (2019).

  • Rajpurkar, P. et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 15, e1002686 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oakden-Rayner, L. Exploring Large-scale Public Medical Image Datasets. Acad Radiol. 27, 106–112 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Arpit, D., Jastrzębski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., et al. A closer look at memorization in deep networks. PMLR, 233–242 (2017).

  • Loverdos, K., Fotiadis, A., Kontogianni, C., Iliopoulou, M. & Gaga, M. Lung nodules: A comprehensive review on current approach and management. Ann. Thorac. Med. 14, 226–238 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernhardt, M. et al. Active label cleaning for improved dataset quality under resource constraints. Nat. Commun. 13, 1161 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, C. H. et al. Identifying pulmonary nodules or masses on chest radiography using deep learning: External validation and strategies to improve clinical practice. Clin. Radiol. 75, 38–45 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yoo, H., Kim, K. H., Singh, R., Digumarthy, S. R. & Kalra, M. K. Validation of a deep learning algorithm for the detection of malignant pulmonary nodules in chest radiographs. JAMA Netw Open. 3, e2017135 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, S. et al. The diagnostic performance and clinical value of deep learning-based nodule detection system concerning influence of location of pulmonary nodule. Insights Imaging. 14, 149 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:171105225 (2017).

  • Ait Nasser, A., & Akhloufi, M. A. Chest diseases classification using CXR and deep ensemble learning. In Proceedings of the 19th International Conference on Content-based Multimedia Indexing 2022, 116–120.

  • Blais, M.-A., & Akhloufi, M. A. Deep learning and binary relevance classification of multiple diseases using chest x-ray images. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2794–2797 (2021).

  • Chen, Y., Liu, F., Tian, Y., Liu, Y., & Carneiro, G. Semantic-guided image virtual attribute learning for noisy multi-label chest x-ray classification. arXiv preprint arXiv:220301937 (2022).

  • Oakden-Rayner, L. Exploring large-scale public medical image datasets. Acad. Radiol. 27, 106–112 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Gündel, S. et al. Robust classification from noisy labels: Integrating additional knowledge for chest radiography abnormality assessment. Med. Image Anal. 72, 102087 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Arun, N. et al. Assessing the trustworthiness of saliency maps for localizing abnormalities in medical imaging. Radiol. Artif. Intell. 3, e200267 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiu, H.-Y. et al. Artificial intelligence for early detection of chest nodules in x-ray images. Biomedicines 10, 2839 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo, H., Kim, K. H., Singh, R., Digumarthy, S. R. & Kalra, M. K. Validation of a deep learning algorithm for the detection of malignant pulmonary nodules in chest radiographs. JAMA Netw. Open. 3, e2017135 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, H. Q. et al. VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations. Sci. Data 9, 429 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teixeira, L. O. et al. Impact of lung segmentation on the diagnosis and explanation of COVID-19 in chest X-ray images. Sensors. 21, 7116 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics. 44, 837–845 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rolnick, D., Veit, A., Belongie, S., & Shavit, N. Deep learning is robust to massive label noise. arXiv preprint arXiv:170510694 (2017).

  • Jang, R. et al. Assessment of the robustness of convolutional neural networks in labeling noise by using chest X-ray images from multiple centers. JMIR Med. Inform. 8, e18089 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karimi, D., Dou, H., Warfield, S. K. & Gholipour, A. Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis. Med. Image Anal. 65, 101759 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, H. & Liu, M. Domain adaptation for medical image analysis: A survey. IEEE Trans. Biomed. Eng. 69, 1173–1185 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2921–2929 (2016).

  • Huff, D. T., Weisman, A. J. & Jeraj, R. Interpretation and visualization techniques for deep learning models in medical imaging. Phys. Med. Biol. 66, 04TR1 (2021).

    Article 

    Google Scholar
     

  • Seah, J. et al. Do comprehensive deep learning algorithms suffer from hidden stratification? A retrospective study on pneumothorax detection in chest radiography. BMJ Open. 11, e053024 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeGrave, A. J., Janizek, J. D. & Lee, S. I. AI for radiographic COVID-19 detection selects shortcuts over signal. medRxiv 196, 105608 (2020).


    Google Scholar
     

  • Behrendt, F. et al. A systematic approach to deep learning-based nodule detection in chest radiographs. Sci. Rep. 13, 10120 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cellina, M. et al. Artificial intelligence in lung cancer screening: The future is now. Cancers. 15, 4344 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranschaert, E., Topff, L. & Pianykh, O. Optimization of radiology workflow with artificial intelligence. Radiol. Clin. North Am. 59, 955–966 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gavelli, G. & Giampalma, E. Sensitivity and specificity of chest x-ray screening for lung cancer. Cancer. 89, 2453–2456 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link

    Source link: https://www.nature.com/articles/s41598-024-66530-y

    What do you think?

    Leave a Reply

    GIPHY App Key not set. Please check settings

    Sorry, you don't need GraphRAG!!!

    No need for GraphRAG!!! Sorry, you don’t need it.

    io.net (IO): Revolutionizing AI/ML Applications With Decentralized GPU Power - Bybit Learn

    Gemini AI Technology integrated in Samsung Galaxy Foldable Phones #GeminiAI