in

Machine learning advancements for partial differential equations #innovation

Promising directions of machine learning for partial differential equations

Summarise this content to 300 words

  • Brezis, H. & Browder, F. Partial differential equations in the 20th century. Adv. Math. 135, 76–144 (1998).

    Article 
    MathSciNet 

    Google Scholar
     

  • Dissanayake, M. & Phan-Thien, N. Neural-network-based approximations for solving partial differential equations. Commun. Numer. Methods Eng. 10, 195–201 (1994).

    Article 

    Google Scholar
     

  • Rico-Martinez, R. & Kevrekidis, I. G. Continuous time modeling of nonlinear systems: a neural network-based approach. In Proc. IEEE International Conference on Neural Networks 1522–1525 (IEEE, 1993).

  • González-García, R., Rico-Martìnez, R. & Kevrekidis, I. G. Identification of distributed parameter systems: a neural net based approach. Comput. Chem. Eng. 22, S965–S968 (1998).

    Article 

    Google Scholar
     

  • Raissi, M., Perdikaris, P. & Karniadakis, G. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Yu, B. et al. The Deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6, 1–12 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Müller, J. & Zeinhofer, M. Deep Ritz revisited. Preprint at https://arxiv.org/abs/1912.03937 (2019).

  • Gao, H., Zahr, M. J. & Wang, J.-X. Physics-informed graph neural Galerkin networks: a unified framework for solving PDE-governed forward and inverse problems. Comput. Methods Appl. Mech. Eng. 390, 114502 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bruna, J., Peherstorfer, B. & Vanden-Eijnden, E. Neural Galerkin schemes with active learning for high-dimensional evolution equations. J. Comput. Phys. 496, 112588 (2024).

    Article 
    MathSciNet 

    Google Scholar
     

  • Battaglia, P. W. et al. Relational inductive biases, deep learning and graph networks. Preprint at https://arxiv.org/abs/1806.01261 (2018).

  • Sanchez-Gonzalez, A. et al. Learning to simulate complex physics with graph networks. In Proc. International Conference on Machine Learning 8459–8468 (PMLR, 2020).

  • Burger, M. et al. Connections between deep learning and partial differential equations. Eur. J. Appl. Math. 32, 395–396 (2021).

    Article 

    Google Scholar
     

  • Loiseau, J.-C. & Brunton, S. L. Constrained sparse Galerkin regression. J. Fluid Mech. 838, 42–67 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Cranmer, M. et al. Lagrangian neural networks. Preprint at https://arxiv.org/abs/2003.04630 (2020).

  • Brunton, S. L., Noack, B. R. & Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477–508 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Wang, R., Walters, R. & Yu, R. Incorporating symmetry into deep dynamics models for improved generalization. In International Conference on Learning Representations (ICLR, 2021).

  • Wang, R., Kashinath, K., Mustafa, M., Albert, A. & Yu, R. Towards physics-informed deep learning for turbulent flow prediction. In Proc. 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 1457–1466 (ACM, 2020).

  • Brandstetter, J., Berg, R. V. D., Welling, M. & Gupta, J. K. Clifford neural layers for PDE modeling. In Eleventh International Conference on Learning Representations (ICLR, 2023)

  • De Haan, P., Weiler, M., Cohen, T. & Welling, M. Gauge equivariant mesh CNNS: anisotropic convolutions on geometric graphs. In International Conference on Learning Representations (ICLR, 2021).

  • Brandstetter, J., Welling, M. & Worrall, D. E. Lie point symmetry data augmentation for neural PDE solvers. In Proc. International Conference on Machine Learning 2241–2256 (PMLR, 2022).

  • Brandstetter, J., Worrall, D. & Welling, M. Message passing neural PDE solvers. Preprint at https://arxiv.org/abs/2202.03376 (2022).

  • Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article 

    Google Scholar
     

  • Brunton, S. L. & Kutz, J. N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems and Control 2nd edn (Cambridge Univ. Press, 2022).

  • Bongard, J. & Lipson, H. Automated reverse engineering of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 104, 9943–9948 (2007).

    Article 

    Google Scholar
     

  • Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009).

    Article 

    Google Scholar
     

  • Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Cranmer, M. Interpretable machine learning for science with PySR and SymbolicRegression.jl. Preprint at https://arxiv.org/abs/2305.01582 (2023).

  • Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven discovery of partial differential equations. Sci. Adv 3, e1602614 (2017).

    Article 

    Google Scholar
     

  • Schaeffer, H. Learning partial differential equations via data discovery and sparse optimization. Proc. Math. Phys. Eng. Sci. 473, 20160446 (2017).

    MathSciNet 

    Google Scholar
     

  • Zanna, L. & Bolton, T. Data-driven equation discovery of ocean mesoscale closures. Geophys. Res. Lett. 47, e2020GL088376 (2020).

    Article 

    Google Scholar
     

  • Schmelzer, M., Dwight, R. P. & Cinnella, P. Discovery of algebraic Reynolds-stress models using sparse symbolic regression. Flow Turbulence Combustion 104, 579–603 (2020).

    Article 

    Google Scholar
     

  • Beetham, S. & Capecelatro, J. Formulating turbulence closures using sparse regression with embedded form invariance. Phys. Rev. Fluids 5, 084611 (2020).

    Article 

    Google Scholar
     

  • Beetham, S., Fox, R. O. & Capecelatro, J. Sparse identification of multiphase turbulence closures for coupled fluid-particle flows. J. Fluid Mech. 914, A11 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bakarji, J. & Tartakovsky, D. M. Data-driven discovery of coarse-grained equations. J. Comput. Phys. 434, 110219 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Maslyaev, M., Hvatov, A. & Kalyuzhnaya, A. Data-driven partial derivative equations discovery with evolutionary approach. In Proc. Computational Science–ICCS 2019: 19th International Conference Part V 19, 635–641 (Springer, 2019).

  • Xu, H., Zhang, D. & Wang, N. Deep-learning based discovery of partial differential equations in integral form from sparse and noisy data. J. Comput. Phys. 445, 110592 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Xu, H., Chang, H. & Zhang, D. DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm. J. Comput. Phys. 418, 109584 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Xu, H., Zhang, D. & Zeng, J. Deep-learning of parametric partial differential equations from sparse and noisy data. Phys. Fluids 33, 037132 (2021).

    Article 

    Google Scholar
     

  • Xu, H. & Zhang, D. Robust discovery of partial differential equations in complex situations. Phys. Rev. Res. 3, 033270 (2021).

    Article 

    Google Scholar
     

  • Chen, Y., Luo, Y., Liu, Q., Xu, H. & Zhang, D. Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE). Phys. Rev. Res. 4, 023174 (2022).

    Article 

    Google Scholar
     

  • Taira, K. & Colonius, T. The immersed boundary method: a projection approach. J. Comput. Phys. 225, 2118–2137 (2007).

    Article 
    MathSciNet 

    Google Scholar
     

  • Colonius, T. & Taira, K. A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Comput. Methods Appl. Mech. Eng. 197, 2131–2146 (2008).

    Article 
    MathSciNet 

    Google Scholar
     

  • Van Breugel, F., Kutz, J. N. & Brunton, B. W. Numerical differentiation of noisy data: a unifying multi-objective optimization framework. IEEE Access 8, 196865–196877 (2020).

    Article 

    Google Scholar
     

  • Messenger, D. A. & Bortz, D. M. Weak SINDy: Galerkin-based data-driven model selection. Multiscale Model. Simul. 19, 1474–1497 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Messenger, D. A. & Bortz, D. M. Weak SINDy for partial differential equations. J. Comput. Phys. 443, 110525 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Schaeffer, H. & McCalla, S. G. Sparse model selection via integral terms. Phys. Rev. E 96, 023302 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Fasel, U., Kutz, J. N., Brunton, B. W. & Brunton, S. L. Ensemble-SINDy: robust sparse model discovery in the low-data, high-noise limit, with active learning and control. Proc. R. Soc. A 478, 20210904 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Gurevich, D. R., Reinbold, P. A. & Grigoriev, R. O. Robust and optimal sparse regression for nonlinear PDE models. Chaos 29, 103113 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Alves, E. P. & Fiuza, F. Data-driven discovery of reduced plasma physics models from fully kinetic simulations. Phys. Rev. Res. 4, 033192 (2022).

    Article 

    Google Scholar
     

  • Reinbold, P. A., Gurevich, D. R. & Grigoriev, R. O. Using noisy or incomplete data to discover models of spatiotemporal dynamics. Phys. Rev. E 101, 010203 (2020).

    Article 

    Google Scholar
     

  • Suri, B., Kageorge, L., Grigoriev, R. O. & Schatz, M. F. Capturing turbulent dynamics and statistics in experiments with unstable periodic orbits. Phys. Rev. Lett. 125, 064501 (2020).

    Article 

    Google Scholar
     

  • Reinbold, P. A., Kageorge, L. M., Schatz, M. F. & Grigoriev, R. O. Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression. Nat. Commun. 12, 3219 (2021).

    Article 

    Google Scholar
     

  • Pope, S. A more general effective-viscosity hypothesis. J. Fluid Mech. 72, 331–340 (1975).

    Article 

    Google Scholar
     

  • Ling, J., Kurzawski, A. & Templeton, J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Duraisamy, K., Iaccarino, G. & Xiao, H. Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51, 357–377 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ahmed, S. E. et al. On closures for reduced order models—a spectrum of first-principle to machine-learned avenues. Phys. Fluids 33, 091301 (2021).

    Article 

    Google Scholar
     

  • Supekar, R. et al. Learning hydrodynamic equations for active matter from particle simulations and experiments. Proc. Natl Acad. Sci. USA 120, e2206994120 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kaptanoglu, A. A. et al. PySINDy: a comprehensive Python package for robust sparse system identification. J. Open Source Softw. 7, 3994 (2022).

    Article 

    Google Scholar
     

  • Long, Z., Lu, Y., Ma, X. & Dong, B. PDE-Net: learning PDEs from data. In Proc. International Conference on Machine Learning 3208–3216 (PMLR, 2018).

  • Long, Z., Lu, Y. & Dong, B. PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 399, 108925 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Atkinson, S. Bayesian hidden physics models: uncertainty quantification for discovery of nonlinear partial differential operators from data. Preprint at https://arxiv.org/abs/2006.04228 (2020).

  • Cai, J.-F., Dong, B., Osher, S. & Shen, Z. Image restoration: total variation, wavelet frames and beyond. J. Am. Math. Soc. 25, 1033–1089 (2012).

    Article 
    MathSciNet 

    Google Scholar
     

  • Dong, B., Jiang, Q. & Shen, Z. Image restoration: wavelet frame shrinkage, nonlinear evolution PDEs and beyond. Multiscale Model. Simul. 15, 606–660 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Schaeffer, H., Caflisch, R., Hauck, C. D. & Osher, S. Sparse dynamics for partial differential equations. Proc. Natl Acad. Sci. USA 110, 6634–6639 (2013).

    Article 
    MathSciNet 

    Google Scholar
     

  • Cranmer, M. D., Xu, R., Battaglia, P. & Ho, S. Learning symbolic physics with graph networks. Preprint at https://arxiv.org/abs/1909.05862 (2019).

  • Cranmer, M. et al. Discovering symbolic models from deep learning with inductive biases. In Advances in Neural Information Processing Systems (eds Larochelle, H. et al.) 17429–17442 (Curran Associates, Inc., 2020).

  • Callaham, J. L., Koch, J. V., Brunton, B. W., Kutz, J. N. & Brunton, S. L. Learning dominant physical processes with data-driven balance models. Nat. Commun. 12, 1016 (2021).

    Article 

    Google Scholar
     

  • Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    Article 

    Google Scholar
     

  • Bakarji, J., Callaham, J., Brunton, S. L. & Kutz, J. N. Dimensionally consistent learning with Buckingham Pi. Nat. Comput. Sci. 2, 834–844 (2022).

    Article 

    Google Scholar
     

  • Koopman, B. O. Hamiltonian systems and transformation in Hilbert space. Proc. Natl Acad. Sci. USA 17, 315–318 (1931).

    Article 

    Google Scholar
     

  • Mezić, I. & Banaszuk, A. Comparison of systems with complex behavior. Phys. D Nonlinear Phenomena 197, 101–133 (2004).

    Article 
    MathSciNet 

    Google Scholar
     

  • Mezić, I. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41, 309–325 (2005).

    Article 
    MathSciNet 

    Google Scholar
     

  • Mezić, I. Analysis of fluid flows via spectral properties of the Koopman operator. Ann. Rev. Fluid Mech. 45, 357–378 (2013).

    Article 
    MathSciNet 

    Google Scholar
     

  • Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. Spectral analysis of nonlinear flows. J. Fluid Mech. 645, 115–127 (2009).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kutz, J. N., Brunton, S. L., Brunton, B. W. & Proctor, J. L. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems (SIAM, 2016).

  • Budišić, M., Mohr, R. & Mezić, I. Applied Koomanism. Chaos 22, 047510 (2012).

    Article 
    MathSciNet 

    Google Scholar
     

  • Brunton, S. L., Budišić, M., Kaiser, E. & Kutz, J. N. Modern Koopman theory for dynamical systems. SIAM Rev. 64, 229–340 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Cover, T. M. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electron Comput. EC-14, 326–334 (1965).

    Article 

    Google Scholar
     

  • Hopf, E. The partial differential equation ut + uux = μuxx. Commun. Pure Appl. Math. 3, 201–230 (1950).

    Article 

    Google Scholar
     

  • Cole, J. D. On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9, 225–236 (1951).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ablowitz, M. J., Kaup, D. J., Newell, A. C. & Segur, H. The inverse scattering transform-fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ablowitz, M. J. & Segur, H. Solitons and the Inverse Scattering Transform (SIAM, 1981).

  • Lusch, B., Kutz, J. N. & Brunton, S. L. Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9, 4950 (2018).

    Article 

    Google Scholar
     

  • Wehmeyer, C. & Noé, F. Time-lagged autoencoders: deep learning of slow collective variables for molecular kinetics. J. Chem. Phys 148, 241703 (2018).

    Article 

    Google Scholar
     

  • Mardt, A., Pasquali, L., Wu, H. & Noé, F. VAMPnets: deep learning of molecular kinetics. Nat. Commun. 9, 5 (2018).

    Article 

    Google Scholar
     

  • Takeishi, N., Kawahara, Y. & Yairi, T. Learning Koopman invariant subspaces for dynamic mode decomposition. In Advances in Neural Information Processing Systems 1130–1140 (NIPS, 2017).

  • Yeung, E., Kundu, S. & Hodas, N. Learning deep neural network representations for Koopman operators of nonlinear dynamical systems. Preprint at https://arxiv.org/abs/1708.06850 (2017).

  • Otto, S. E. & Rowley, C. W. Linearly recurrent autoencoder networks for learning dynamics. SIAM J. Appl. Dyn. Syst. 18, 558–593 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Li, Q., Dietrich, F., Bollt, E. M. & Kevrekidis, I. G. Extended dynamic mode decomposition with dictionary learning: a data-driven adaptive spectral decomposition of the Koopman operator. Chaos 27, 103111 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Eivazi, H., Guastoni, L., Schlatter, P., Azizpour, H. & Vinuesa, R. Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence. Int. J. Heat Fluid Flow 90, 108816 (2021).

    Article 

    Google Scholar
     

  • Gin, C., Lusch, B., Brunton, S. L. & Kutz, J. N. Deep learning models for global coordinate transformations that linearise PDEs. Eur. J. Appl. Math. 32, 515–539 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Noé, F. & Nuske, F. A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model. Simul. 11, 635–655 (2013).

    Article 
    MathSciNet 

    Google Scholar
     

  • Nüske, F., Keller, B. G., Pérez-Hernández, G., Mey, A. S. & Noé, F. Variational approach to molecular kinetics. J.Chem. Theory Comput. 10, 1739–1752 (2014).

    Article 

    Google Scholar
     

  • Williams, M. O., Kevrekidis, I. G. & Rowley, C. W. A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 6, 1307–1346 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Williams, M. O., Rowley, C. W. & Kevrekidis, I. G. A kernel approach to data-driven Koopman spectral analysis. J. Comput. Dyn. 2, 247–265 (2015).


    Google Scholar
     

  • Klus, S. Data-driven model reduction and transfer operator approximation. J. Nonlinear Sci. 28, 985–1010 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kutz, J. N., Proctor, J. L. & Brunton, S. L. Applied Koopman theory for partial differential equations and data-driven modeling of spatio-temporal systems. Complexity 2018, 6010634 (2018).


    Google Scholar
     

  • Page, J. & Kerswell, R. R. Koopman analysis of burgers equation. Phys. Rev. Fluids 3, 071901 (2018).

    Article 

    Google Scholar
     

  • Lu, L., Jin, P. & Karniadakis, G. E. DeepONet: learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. Preprint at https://arxiv.org/abs/1910.03193 (2019).

  • Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, G. E. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3, 218–229 (2021).

    Article 

    Google Scholar
     

  • Kovachki, N. et al. Neural operator: learning maps between function spaces with applications to PDEs. J. Mach. Learn. Res. 24, 1–97 (2023).

    MathSciNet 

    Google Scholar
     

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).

  • Colbrook, M. J., Ayton, L. J. & Szőke, M. Residual dynamic mode decomposition: robust and verified Koopmanism. J. Fluid Mech. 955, A21 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Colbrook, M. J. & Townsend, A. Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems. Commun. Pure Appl. Math. 77, 221–283 (2024).

    Article 
    MathSciNet 

    Google Scholar
     

  • Lumley, J. Toward a turbulent constitutive relation. J. Fluid Mech. 41, 413–434 (1970).

    Article 

    Google Scholar
     

  • Berkooz, G., Holmes, P. & Lumley, J. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993).

    Article 
    MathSciNet 

    Google Scholar
     

  • Holmes, P., Lumley, J. L., Berkooz, G. & Rowley, C. W. Turbulence, Coherent Structures, Dynamical Systems and Symmetry 2nd edn (Cambridge Univ. Press, 2012).

  • Taira, K. et al. Modal analysis of fluid flows: an overview. AIAA J. 55, 4013–4041 (2017).

    Article 

    Google Scholar
     

  • Taira, K. et al. Modal analysis of fluid flows: applications and outlook. AIAA J. 58, 998–1022 (2020).

    Article 

    Google Scholar
     

  • Benner, P., Gugercin, S. & Willcox, K. A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Qian, E., Kramer, B., Peherstorfer, B. & Willcox, K. Lift & Learn: physics-informed machine learning for large-scale nonlinear dynamical systems. Phys. D Nonlinear Phenom. 406, 132401 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Peherstorfer, B. & Willcox, K. Data-driven operator inference for nonintrusive projection-based model reduction. Comput. Methods Appl. Mech. Eng. 306, 196–215 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Benner, P., Goyal, P., Kramer, B., Peherstorfer, B. & Willcox, K. Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms. Comput. Methods Appl. Mech. Eng. 372, 113433 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Peherstorfer, B., Drmac, Z. & Gugercin, S. Stability of discrete empirical interpolation and gappy proper orthogonal decomposition with randomized and deterministic sampling points. SIAM J. Sci. Comput. 42, A2837–A2864 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Holmes, P. & Guckenheimer, J. (eds) Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields Vol. 42 (Springer, 1983).

  • Rowley, C. W. & Marsden, J. E. Reconstruction equations and the Karhunen-Loève expansion for systems with symmetry. Phys. D Nonlinear Phenom. 142, 1–19 (2000).

    Article 

    Google Scholar
     

  • Abraham, R., Marsden, J. E. & Ratiu, T. Manifolds, Tensor Analysis and Applications Vol. 75 (Springer, 1988).

  • Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry 2nd edn (Springer, 1999).

  • Lee, K. & Carlberg, K. T. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys. 404, 108973 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Schmid, P. J. Dynamic mode decomposition for numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010).

    Article 
    MathSciNet 

    Google Scholar
     

  • Loiseau, J.-C., Noack, B. R. & Brunton, S. L. Sparse reduced-order modeling: sensor-based dynamics to full-state estimation. J. Fluid Mech. 844, 459–490 (2018).

    Article 

    Google Scholar
     

  • Deng, N., Noack, B. R., Morzynski, M. & Pastur, L. R. Low-order model for successive bifurcations of the fluidic pinball. J. Fluid Mech. 884, A37 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Loiseau, J.-C. Data-driven modeling of the chaotic thermal convection in an annular thermosyphon.Theor. Comput. Fluid Dyn 34, 339–365 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Guan, Y., Brunton, S. L. & Novosselov, I. Sparse nonlinear models of chaotic electroconvection. R. Soc. Open Sci. 8, 202367 (2021).

    Article 

    Google Scholar
     

  • Kaptanoglu, A. A., Morgan, K. D., Hansen, C. J. & Brunton, S. L. Physics-constrained, low-dimensional models for magnetohydrodynamics: first-principles and data-driven approaches. Phys. Rev. E 104, 015206 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kaptanoglu, A. A., Callaham, J. L., Aravkin, A., Hansen, C. J. & Brunton, S. L. Promoting global stability in data-driven models of quadratic nonlinear dynamics. Phys. Rev. Fluids 6, 094401 (2021).

    Article 

    Google Scholar
     

  • Deng, N., Noack, B. R., Morzyński, M. & Pastur, L. R. Galerkin force model for transient and post-transient dynamics of the fluidic pinball. J. Fluid Mech. 918, A4 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Callaham, J. L., Loiseau, J.-C., Rigas, G. & Brunton, S. L. Nonlinear stochastic modelling with Langevin regression. Proc. R. Soc. A 477, 20210092 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Callaham, J. L., Brunton, S. L. & Loiseau, J.-C. On the role of nonlinear correlations in reduced-order modeling. J. Fluid Mech. 938, A1 (2022).

    Article 

    Google Scholar
     

  • Callaham, J. L., Rigas, G., Loiseau, J.-C. & Brunton, S. L. An empirical mean-field model of symmetry-breaking in a turbulent wake. Sci. Adv. 8, eabm4786 (2022).

    Article 

    Google Scholar
     

  • Pathak, J., Lu, Z., Hunt, B. R., Girvan, M. & Ott, E. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos 27, 121102 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Pathak, J., Hunt, B., Girvan, M., Lu, Z. & Ott, E. Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys. Rev. Lett. 120, 024102 (2018).

    Article 

    Google Scholar
     

  • Champion, K., Lusch, B., Kutz, J. N. & Brunton, S. L. Data-driven discovery of coordinates and governing equations. Proc. Natl Acad. Sci. USA 116, 22445–22451 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Baddoo, P. J., Herrmann, B., McKeon, B. J. & Brunton, S. L. Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization (LANDO). Proc. R. Soc. A 478, 20210830 (2022).

    Article 

    Google Scholar
     

  • Reed, M. & Simon, B. Methods of Modern Mathematical Physics. I 2nd edn (Academic, 1980).

  • Courant, R. & Hilbert, D. Methods of Mathematical Physics: Partial Differential Equations (Wiley, 2008).

  • Li, Z. et al. Neural operator: graph kernel network for partial differential equations. Preprint at https://arxiv.org/abs/2003.03485 (2020).

  • Li, Z. et al. Multipole graph neural operator for parametric partial differential equations. Preprint at https://arxiv.org/abs/2006.09535 (2020).

  • Li, Z. et al. Fourier neural operator for parametric partial differential equations. Preprint at https://arxiv.org/abs/2010.08895 (2020).

  • Gin, C. R., Shea, D. E., Brunton, S. L. & Kutz, J. N. DeepGreen: deep learning of Green’s functions for nonlinear boundary value problems. Sci. Rep. 11, 21614 (2021).

    Article 

    Google Scholar
     

  • de Hoop, M. V., Kovachki, N. B., Nelsen, N. H. & Stuart, A. M. Convergence rates for learning linear operators from noisy data. SIAM-ASA J. Uncertain. Quantif. 11, 480–513 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • De Hoop, M., Huang, D. Z., Qian, E. & Stuart, A. M. The cost-accuracy trade-off in operator learning with neural networks. Preprint at https://arxiv.org/abs/2203.13181 (2022).

  • Mollenhauer, M., Mücke, N. & Sullivan, T. Learning linear operators: infinite-dimensional regression as a well-behaved non-compact inverse problem. Preprint at https://arxiv.org/abs/2211.08875 (2022).

  • Lange, H., Brunton, S. L. & Kutz, J. N. From Fourier to Koopman: spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22, 1–38 (2021).

    MathSciNet 

    Google Scholar
     

  • Lanthaler, S., Mishra, S. & Karniadakis, G. E. Error estimates for DeepONets: a deep learning framework in infinite dimensions. Trans. Math. Appl. 6, tnac001 (2022).

    MathSciNet 

    Google Scholar
     

  • Kovachki, N., Lanthaler, S. & Mishra, S. On universal approximation and error bounds for Fourier neural operators. J. Mach. Learn. Res. 22, 13237–13312 (2021).

    MathSciNet 

    Google Scholar
     

  • Lyu, Y., Zhao, X., Gong, Z., Kang, X. & Yao, W. Multi-fidelity prediction of fluid flow based on transfer learning using Fourier neural operator. Phys. Fluids 35, 077118 (2023).

    Article 

    Google Scholar
     

  • Gopakumar, V. et al. Plasma surrogate modelling using Fourier neural operators. Nucl. Fusion 64, 056025 (2024).

    Article 

    Google Scholar
     

  • Kurth, T. et al. FourCastNet: accelerating global high-resolution weather forecasting using adaptive Fourier neural operators. In Proc. Platform for Advanced Scientific Computing Conference 1–11 (ACM, 2023).

  • Raonić, B. et al. Convolutional neural operators for robust and accurate learning of PDEs. In Advances in Neural Information Processing Systems (eds Oh, A. et al.) 77187–77200 (NeurIPS, 2023).

  • Fanaskov, V. & Oseledets, I. Spectral neural operators. Preprint at https://arxiv.org/abs/2205.10573 (2022).

  • Chen, T. & Chen, H. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans. Neural Networks 6, 911–917 (1995).

    Article 

    Google Scholar
     

  • Cao, S. Choose a transformer: Fourier or Galerkin. Adv. Neural Inf. Process. Syst. 34, 24924–24940 (2021).


    Google Scholar
     

  • Li, Z., Meidani, K. & Farimani, A. B. Transformer for partial differential equations’ operator learning. Transact. Mach. Learn. Res. https://openreview.net/pdf?id=EPPqt3uERT (2023).

  • Vinuesa, R. & Brunton, S. L. Enhancing computational fluid dynamics with machine learning. Nat. Comput. Sci. 2, 358–366 (2022).

    Article 

    Google Scholar
     

  • Mishra, S. A machine learning framework for data driven acceleration of computations of differential equations. Math. Eng. 1, 118–146 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bar-Sinai, Y., Hoyer, S., Hickey, J. & Brenner, M. P. Learning data-driven discretizations for partial differential equations. Proc. Natl Acad. Sci. USA 116, 15344–15349 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Stevens, B. & Colonius, T. Enhancement of shock-capturing methods via machine learning. Theor. Comput. Fluid Dyn. 34, 483–496 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Barrault, M., Maday, Y., Nguyen, N. C. & Patera, A. T. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. 339, 667–672 (2004).

    Article 
    MathSciNet 

    Google Scholar
     

  • Chaturantabut, S. & Sorensen, D. C. Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32, 2737–2764 (2010).

    Article 
    MathSciNet 

    Google Scholar
     

  • Stevens, B. & Colonius, T. FiniteNet: a fully convolutional LSTM network architecture for time-dependent partial differential equations. Preprint at https://arxiv.org/abs/2002.03014 (2020).

  • Yousif, M. Z., Zhang, M., Yu, L., Vinuesa, R. & Lim, H. A transformer-based synthetic-inflow generator for spatially developing turbulent boundary layers. J. Fluid Mech. 957, A6 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kochkov, D. et al. Machine learning-accelerated computational fluid dynamics. Proc. Natl Acad. Sci. USA 118, e2101784118 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Fukami, K., Fukagata, K. & Taira, K. Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 870, 106–120 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Fukami, K., Fukagata, K. & Taira, K. Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows. J. Fluid Mech. 909, A9 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Fukami, K. & Taira, K. Robust machine learning of turbulence through generalized Buckingham Pi-inspired pre-processing of training data. In APS Division of Fluid Dynamics Meeting Abstracts A31-004 (APS, 2021).

  • Pan, S., Brunton, S. L. & Kutz, J. N. Neural implicit flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data. J. Mach. Learn. Res. 24, 1607–1666 (2023).

    MathSciNet 

    Google Scholar
     

  • Takamoto, M. et al. PDEBench: an extensive benchmark for scientific machine learning. In Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (NeurIPS, 2022).

  • Source link

    Source link: https://www.nature.com/articles/s43588-024-00643-2

    What do you think?

    Leave a Reply

    GIPHY App Key not set. Please check settings

    Insightful Review - Track Remote and Hybrid Employees Easily

    #InsightfulReview: Effortlessly Manage Remote and Hybrid Employee Tracking

    5 Helpful ChatGPT Prompts To Improve Your Productivity

    Boost productivity with these 5 ChatGPT prompts. #ProductivityTips