in

#SkinGPT-4 improves dermatological diagnosis with pre-trained large model. #AI

Pre-trained multimodal large language model enhances dermatological diagnosis using SkinGPT-4

Summarise this content to 300 words

  • Hay, R. J. et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J. Investig. Dermatol. 134, 1527–1534 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, H., Berk-Krauss, J., Feng, P. W. & Stein, J. A. Comparison of dermatologist density between urban and rural counties in the United States. JAMA Dermatol. 154, 1265–1271 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Resneck, J. Jr. & Kimball, A. B. The dermatology workforce shortage. J. Am. Acad. Dermatol. 50, 50–54 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. A deep learning system for differential diagnosis of skin diseases. Nat. Med. 26, 900–908 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Seth, D., Cheldize, K., Brown, D. & Freeman, E. E. Global burden of skin disease: inequities and innovations. Curr. Dermatol. Rep. 6, 204–210 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Federman, D. G., Concato, J. & Kirsner, R. S. Comparison of dermatologic diagnoses by primary care practitioners and dermatologists: a review of the literature. Arch. Fam. Med. 8, 170 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno, G., Tran, H., Chia, A. L., Lim, A. & Shumack, S. Prospective study to assess general practitioners’ dermatological diagnostic skills in a referral setting. Australas. J. Dermatol. 48, 77–82 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Yim, K. M., Florek, A. G., Oh, D. H., McKoy, K. & Armstrong, A. W. Teledermatology in the United States: an update in a dynamic era. Telemed. e-Health 24, 691–697 (2018).

    Article 

    Google Scholar
     

  • Kshirsagar, P. R. et al. Deep learning approaches for prognosis of automated skin disease. Life 12, 426 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martora, F., Ruggiero, A., Fabbrocini, G. & Villani, A. Patient satisfaction with remote dermatology consultations during the COVID‐19 pandemic. Comment on ‘A qualitative assessment of patient satisfaction with remote dermatology consultations used during the UK’s first wave of the COVID‐19 pandemic in a single, secondary‐care dermatology department. Clin. Exp. Dermatol. 47, 2037–2038 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • López-Liria, R. et al. Teledermatology versus face-to-face dermatology: an analysis of cost-effectiveness from eight studies from Europe and the United States. Int. J. Environ. Res. Public Health 19, 2534 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lakdawala, N., Gronbeck, C. & Feng, H. Workforce characteristics of nonphysician clinicians in dermatology in the United States. J. Am. Acad. Dermatol. 87, 1108–1110 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Pious, I. K. & Srinivasan, R. A review on early diagnosis of skin cancer detection using deep learning techniques. In 2022 International Conference on Computer, Power and Communications (ICCPC). (IEEE, 2022).

  • Puri, P. et al. Deep learning for dermatologists: part II. Current applications. J. Am. Acad. Dermatol. 87, 1352–1360 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Reshma, S. & Reeja, S. A review of computer assistance in dermatology. In 2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE). (IEEE, 2023).

  • Han, S. S. et al. Augmented intelligence dermatology: deep neural networks empower medical professionals in diagnosing skin cancer and predicting treatment options for 134 skin disorders. J. Investig. Dermatol. 140, 1753–1761 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Popescu, D., El-Khatib, M., El-Khatib, H. & Ichim, L. New trends in melanoma detection using neural networks: a systematic review. Sensors 22, 496 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, S. S. et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J. Investig. Dermatol. 138, 1529–1538 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haenssle, H. A. et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29, 1836–1842 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marchetti, M. A. et al. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J. Am. Acad. Dermatol. 78, 270–277.e271 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Brinker, T. J. et al. Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark. Eur. J. Cancer 111, 30–37 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yap, J., Yolland, W. & Tschandl, P. Multimodal skin lesion classification using deep learning. Exp. Dermatol. 27, 1261–1267 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Aggarwal, S. L. P. Data augmentation in dermatology image recognition using machine learning. Ski. Res. Technol. 25, 815–820 (2019).

    Article 

    Google Scholar
     

  • Tschandl, P. et al. Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks. JAMA Dermatol. 155, 58–65 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Han, S. S. et al. Keratinocytic skin cancer detection on the face using region-based convolutional neural network. JAMA Dermatol. 156, 29–37 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jones, O. et al. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review. Lancet Digit. Health 4, e466–e476 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hekler, A. et al. Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur. J. Cancer 115, 79–83 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. Recognizing basal cell carcinoma on smartphone‐captured digital histopathology images with a deep neural network. Br. J. Dermatol. 182, 754–762 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hekler, A. et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur. J. Cancer 118, 91–96 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Roffman, D., Hart, G., Girardi, M., Ko, C. J. & Deng, J. Predicting non-melanoma skin cancer via a multi-parameterized artificial neural network. Sci. Rep. 8, 1701 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lott, J. P. et al. Population-based analysis of histologically confirmed melanocytic proliferations using natural language processing. JAMA Dermatol. 154, 24–29 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Han, S. S. et al. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PLoS ONE 13, e0191493 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernardis, E. & Castelo-Soccio, L. Quantifying alopecia areata via texture analysis to automate the salt score computation. In Journal of Investigative Dermatology Symposium Proceedings. (Elsevier, 2018).

  • Thieme, A. H. et al. A deep-learning algorithm to classify skin lesions from mpox virus infection. Nat. Med. 29, 738–747 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cruz-Roa, A. A., Arevalo Ovalle, J. E., Madabhushi, A. & González Osorio, F. A. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013: 16th International Conference, Nagoya, Japan, September 22-26, 2013, Proceedings, Part II 16. (Springer, 2013).

  • Yuan, Y., Chao, M. & Lo, Y.-C. Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans. Med. imaging 36, 1876–1886 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Tschandl, P. et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. lancet Oncol. 20, 938–947 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, X., Yang, J., Sun, M. & Wang, K. A benchmark for automatic visual classification of clinical skin disease images. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI 14. (Springer, 2016).

  • Kung, T. H. et al. Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models. PLoS Digit. Health 2, e0000198 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sallam, M., Salim, N. A., Barakat, M. & Ala’a, B. ChatGPT applications in medical, dental, pharmacy, and public health education: a descriptive study highlighting the advantages and limitations. Narra J. 3, e103 (2023).

  • Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with GPT-4. Preprint at https://arxiv.org/abs/2303.12712 (2023).

  • Lee, P., Bubeck, S. & Petro, J. Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. New Engl. J. Med. 388, 1233–1239 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Balas, M. & Ing, E. B. Conversational AI models for ophthalmic diagnosis: comparison of ChatGPT and the Isabel Pro differential diagnosis generator. JFO Open Ophthalmol. 1, 100005 (2023).

    Article 

    Google Scholar
     

  • Mijwil, M., Aljanabi, M. & Ali, A. H. Chatgpt: exploring the role of cybersecurity in the protection of medical information. Mesop. J. Cybersecur. 2023, 18–21 (2023).


    Google Scholar
     

  • Sinha, R. K., Roy, A. D., Kumar, N., Mondal, H. & Sinha, R. Applicability of ChatGPT in assisting to solve higher order problems in pathology. Cureus 15, e35237 (2023).

  • Ufuk, F. The role and limitations of large language models such as ChatGPT in clinical settings and medical journalism. Radiology 307, e230276 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, M., Pan, S., Li, Y. & Yang, X. Advancing medical imaging with language models: a journey from n-grams to chatgpt. Preprint at https://arxiv.org/pdf/2304.04920 (2023).

  • Vaishya, R., Misra, A. & Vaish, A. ChatGPT: is this version good for healthcare and research?. Diabetes Metab. Syndr. Clin. Res. Rev. 17, 102744 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Beltrami, E. J. & Grant-Kels, J. M. Consulting ChatGPT: ethical dilemmas in language model artificial intelligence. J. Am. Acad. Dermatol. 90, 879–880 (2023).

  • Li, C. et al. Llava-med: training a large language-and-vision assistant for biomedicine in one day. Adv. Neural Inf. Process. Syst. 36 (2024).

  • Singhal, K. et al. Large language models encode clinical knowledge. Nature 620, 172–180 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daneshjou, R. et al. Disparities in dermatology AI performance on a diverse, curated clinical image set. Sci. Adv. 8, eabq6147 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, H. K., Park, C., Henao, R. & Kheterpal, M. Deep learning in dermatology: a systematic review of current approaches, outcomes, and limitations. JID Innov. 3, 100150 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, S., Zhao, Z., Ouyang, X., Wang, Q. & Shen, D. Chatcad: interactive computer-aided diagnosis on medical image using large language models. Preprint at https://arxiv.org/abs/2302.07257 (2023).

  • Li, H. et al. Multi-step jailbreaking privacy attacks on ChatGPT. Preprint at https://arxiv.org/abs/2304.05197 (2023).

  • Lund, B., Agbaji, D. & Teel, Z. A. Information literacy, data literacy, privacy literacy, and ChatGPT: technology literacies align with perspectives on emerging technology adoption within communities. Lund., B, Agbaji, D., Teel, ZA (2023) Inf. Lit., Data Lit., Priv. Lit., ChatGPT: Technol. Literacies Align Perspect. Emerg. Technol. Adoption Commun. Hum. Technol. 19, 163–177 (2023).


    Google Scholar
     

  • Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. et al. PPML-Omics: a privacy-preserving federated machine learning method protects patients’ privacy in omic data. Sci. Adv. 10, eadh8601 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, J. et al. Personalized and privacy-preserving federated heterogeneous medical image analysis with PPPML-HMI. Comput. Biol. Med. 169, 107861 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, J. et al. A unified method to revoke the private data of patients in intelligent healthcare with audit to forget. Nat. Commun. 14, 6255 (2023).

  • Zhu, D., Chen, J., Shen, X., Li, X. & Elhoseiny, M. Minigpt-4: enhancing vision-language understanding with advanced large language models. Preprint at https://arxiv.org/abs/2304.10592 (2023).

  • Chiang, W.-L. et al. Vicuna: an open-source chatbot impressing GPT-4 with 90%* ChatGPT quality. https://vicuna.lmsys.org (2023).

  • Touvron, H. et al. Llama: open and efficient foundation language models. Preprint at https://arxiv.org/abs/2302.13971 (2023).

  • Li, J., Li, D., Savarese, S. & Hoi, S. Blip-2: bootstrapping language-image pre-training with frozen image encoders and large language models. In International conference on machine learning. (PMLR, 2023).

  • Fang, Y. et al. Eva: exploring the limits of masked visual representation learning at scale. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. (IEEE, 2023).

  • Sharma, P., Ding, N., Goodman, S. & Soricut, R. Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (Association for Computational Linguistics, 2018).

  • Ordonez, V., Kulkarni, G. & Berg, T. Im2text: describing images using 1 million captioned photographs. Adv. Neural Inf. Process. Syst. 24 (2011).

  • Schuhmann, C. et al. Laion-400m: open dataset of clip-filtered 400 million image-text pairs. Preprint at https://arxiv.org/abs/2111.02114 (2021).

  • Preiksaitis, C., Sinsky, C. A. & Rose, C. ChatGPT is not the solution to physicians’ documentation burden. Nat. Med. 29, 1296–1297 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, W. & Cockerell, C. J. The actinic (solar) keratosis: a 21st-century perspective. Arch. Dermatol. 139, 66–70 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Kanthraj, G. R. The twenty factors that made teledermatology consultation a matured application: a systematic review. Clin. Dermatol. Rev. 7, 10–15 (2023).

    Article 

    Google Scholar
     

  • Liang, W., Yuksekgonul, M., Mao, Y., Wu, E. & Zou, J. GPT detectors are biased against non-native English writers. Patterns 4, 100779 (2023).

  • Acne Group CoT, Dermatology WM, Acne Group CSoD, Acne Group CDA, Acne group DC, Chinese Non-government Medical Institutions Association. Chinese Guidelines for the Management of Acne Vulgaris: 2019 Update#. Int. J. Dermatol. Venereol. 2, 129–137 (2019).

  • Sierro, T. J. et al. Differences in health care resource utilization and costs for keratinocyte carcinoma among racioethnic groups: a population-based study. J. Am. Acad. Dermatol. 86, 373–378 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Agbai, O. N. et al. Skin cancer and photoprotection in people of color: a review and recommendations for physicians and the public. J. Am. Acad. Dermatol. 70, 748–762 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Daneshjou, R., Yuksekgonul, M., Cai, Z. R., Novoa, R. & Zou, J. Y. Skincon: a skin disease dataset densely annotated by domain experts for fine-grained debugging and analysis. Adv. Neural Inf. Process. Syst. 35, 18157–18167 (2022).


    Google Scholar
     

  • Groh, M. et al. Evaluating deep neural networks trained on clinical images in dermatology with the Fitzpatrick 17k dataset. In IEEE Comput. Soc. Conf. 1820–1828 (IEEE, 2021).

  • Act, A. Health insurance portability and accountability act of 1996. Public Law 104, 191 (1996).


    Google Scholar
     

  • Dosovitskiy, A. et al. An image is worth 16×16 words: transformers for image recognition at scale. Preprint at https://arxiv.org/abs/2010.11929 (2020).

  • Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017).

  • Source link

    Source link: https://www.nature.com/articles/s41467-024-50043-3

    What do you think?

    Leave a Reply

    GIPHY App Key not set. Please check settings

    Comprehensive Guide to Designing an Effective Corporate Wellness Program with GetLabTest.com | by GetLabTest | Jul, 2024

    Ultimate guide for creating successful corporate wellness program #wellness

    AI

    Roger Federer’s Lessons on Selecting Good AI Tools #AISelection